Hello. I need to select the most informative input parameters using a neural network. I tried using autoencoder, but I did not succeed. Can you advise me(or give ready code if it is exist) how I can determine the most important parameters in the input sample? INPUT matrix: 114(features)x426(samples), outputs: 62x426. Data look so: inputs (1; 85,4794464111327; 56,4613265991210; 0; 0; 0; 0; 29,0181198120117; 0; 51,6929779052734; 87; 50; 32; 18; 137,172424316406 ...), outputs (0,731800019741058; 0,555100023746491; 0,214200004935265; 0,00219999998807907; 0,0132999997586012; 0,00289999996311963; 0,00689999992027879; 0,00130000000353903; 0,00150000001303852; 0,0496999993920326; 0,0828000009059906; 0,142299994826317...). It is one sample of 426.
John Williams answered .
2025-11-20
addedvarplot - Create added-variable plot for stepwise regression stepwise - Interactive tool for stepwise regression. stepwisefit - Fit regression model using stepwise regression stepwiseglm - Create generalized linear regression model by stepwise regression. stepwiselm - Create 1st order linear regression model by stepwise regression.