Aulia Amanullah asked . 2024-03-14

How to plot the frequency spectrum graph in high-pass filter Blackman windowing method?

Hi everyone,

I want to plot the frequency spectrum graph of an original audio signal by using this code:

 

%input audio file with format: *.wav 
[samAud, samRate]=audioread('Toto_Africa.wav');
N=200;
f=0:samRate/(N/2-1):samRate;
samAud_fft=fft(samAud,N);

%plot audio file in time domain
figure(1)
plot(samAud); %plot original audio signal in time domain

%plot audio file in frequency domain
figure(2)
plot(f,abs(samAud_fft(1:N/2))/max(abs(samAud_fft(1:N/2))));
xlabel('Frequency (in hertz)');
However, I have trouble where the graph is only showing like this:

Could somebody help me troubleshoot this problem?

Signal Processing , Signal Processing Toolbox , blackman , windowing , spectrum

Expert Answer

John Williams answered . 2024-05-14 08:40:10

my code suggestion for audio file analysis : 

 

clc
clear all
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% data
[signal,Fs] = audioread('test_voice.wav');

[samples,channels] = size(signal);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 256;    % 
OVERLAP = 0.75;

% spectrogram dB scale
spectrogram_dB_scale = 80;  % dB range scale (means , the lowest displayed level is XX dB below the max level)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums 

% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;

%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 4;
if decim>1
    for ck = 1:channels
    newsignal(:,ck) = decimate(signal(:,ck),decim);
    Fs = Fs/decim;
    end
   signal = newsignal;
end
samples = length(signal);
time = (0:samples-1)*1/Fs;

%%%%%% legend structure %%%%%%%%
for ck = 1:channels
    leg_str{ck} = ['Channel ' num2str(ck) ];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : time domain plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1),plot(time,signal);grid on
title(['Time plot  / Fs = ' num2str(Fs) ' Hz ']);
xlabel('Time (s)');ylabel('Amplitude');
legend(leg_str);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);

% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);

% apply A weigthing if needed
if option_w == 1
    pondA_dB = pondA_function(freq);
    sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
    my_ylabel = ('Amplitude (dB (A))');
else
    my_ylabel = ('Amplitude (dB (L))');
end


figure(2),plot(freq,sensor_spectrum_dB);grid on
df = freq(2)-freq(1); % frequency resolution 
title(['Averaged FFT Spectrum  / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
legend(leg_str);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 3 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for ck = 1:channels
    [sg,fsg,tsg] = specgram(signal(:,ck),NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));  

    % FFT normalisation and conversion amplitude from linear to dB (peak)
    sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg));     % NB : X=fft(x.*hanning(N))*4/N; % hanning only

    % apply A weigthing if needed
    if option_w == 1
        pondA_dB = pondA_function(fsg);
        sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
        my_title = ('Spectrogram (dB (A))');
    else
        my_title = ('Spectrogram (dB (L))');
    end

    % saturation of the dB range : 
    % saturation_dB = 60;  % dB range scale (means , the lowest displayed level is XX dB below the max level)
    min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
    sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;

    % plots spectrogram
    figure(2+ck);
    imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
    axis('xy');colorbar('vert');grid on
    df = fsg(2)-fsg(1); % freq resolution 
    title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz / Channel : ' num2str(ck)]);
    xlabel('Time (s)');ylabel('Frequency (Hz)');

end

function pondA_dB = pondA_function(f)
	% dB (A) weighting curve
	n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
	r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
	pondA = n./r;
	pondA_dB = 20*log10(pondA(:));
end


function  [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal  (example sinus amplitude 1   = 0 dB after fft).
% Linear averaging
%   signal - input signal, 
%   Fs - Sampling frequency (Hz).
%   nfft - FFT window size
%   Overlap - buffer percentage of overlap % (between 0 and 0.95)

[samples,channels] = size(signal);

% fill signal with zeros if its length is lower than nfft
if samples

 


Not satisfied with the answer ?? ASK NOW

Frequently Asked Questions

MATLAB offers tools for real-time AI applications, including Simulink for modeling and simulation. It can be used for developing algorithms and control systems for autonomous vehicles, robots, and other real-time AI systems.

MATLAB Online™ provides access to MATLAB® from your web browser. With MATLAB Online, your files are stored on MATLAB Drive™ and are available wherever you go. MATLAB Drive Connector synchronizes your files between your computers and MATLAB Online, providing offline access and eliminating the need to manually upload or download files. You can also run your files from the convenience of your smartphone or tablet by connecting to MathWorks® Cloud through the MATLAB Mobile™ app.

Yes, MATLAB provides tools and frameworks for deep learning, including the Deep Learning Toolbox. You can use MATLAB for tasks like building and training neural networks, image classification, and natural language processing.

MATLAB and Python are both popular choices for AI development. MATLAB is known for its ease of use in mathematical computations and its extensive toolbox for AI and machine learning. Python, on the other hand, has a vast ecosystem of libraries like TensorFlow and PyTorch. The choice depends on your preferences and project requirements.

You can find support, discussion forums, and a community of MATLAB users on the MATLAB website, Matlansolutions forums, and other AI-related online communities. Remember that MATLAB's capabilities in AI and machine learning continue to evolve, so staying updated with the latest features and resources is essential for effective AI development using MATLAB.

Without any hesitation the answer to this question is NO. The service we offer is 100% legal, legitimate and won't make you a cheater. Read and discover exactly what an essay writing service is and how when used correctly, is a valuable teaching aid and no more akin to cheating than a tutor's 'model essay' or the many published essay guides available from your local book shop. You should use the work as a reference and should not hand over the exact copy of it.

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.