How can i obtain a damping Matrix C, with an inherent damping matrix of 2% for all the modes ?

Illustration
Kimbugwe Daniel - 2023-07-12T13:17:29+00:00
Question: How can i obtain a damping Matrix C, with an inherent damping matrix of 2% for all the modes ?

 have written code to obtain eigen values and vectors using Stiffness K and Mass M and i want to obtain the damping matrix using an inherent damping ratio of 2% of the structure for all the vibration modes. How do i do it? here under is the my code thus far.   clc; h=[5.5]+[0:3.96:20*3.95]; % Total floor height(m)% %--------------Start of Mass Matrix---------------% M(1,1)=1.126e+003 ; % unit: ton M(20,20)=1.170e+003 ; % unit: ton for i=2:19 M(i,i)=1.100e+003; % unit: ton end disp('Mass Matrix(ton):'); disp(M) %--------------end of Mass Matrix-----------------% %--------------Start of Stiffness Matrix----------% for i=1:5 k(1,i)=862.07e+003; % unit: kN/m end for i=6:11 k(1,i)=554.17e+003 ; % unit: kN/m end for i=12:14 k(1,i)=453.51e+003 ; % unit: kN/m end for i=15:17 k(1,i)=291.23e+003 ; % unit: kN/m end for i=18:19 k(1,i)=256.46e+003 ; % unit: kN/m end k(1,20)=171.70e+003 ; % unit: kN/m K=zeros(20,20) for j=1:(20-1) K(j,j) = k(1,j)+k(1,j+1); K(j,j+1) = -k(1,j+1); K(j+1,j) = -k(1,j+1); end K(20,20)=171.70e+003 ; % unit: kN/m %--------------End of Stiffness Matrix--------------% %----Start of Eigen Values and Eigne Vectors--------% [eigvec,eigval]=eig(K,M); %Eigen Values and Vectors% wn = sort(sqrt(diag(eigval))); f =(wn/(2*pi)); Tn = (2*pi)./wn; disp('Mode Omega(w) Time_Period ') for i = 1:length(wn) fprintf (' %d %.2f %.2f \n',i,wn(i,1),Tn(i,1)) end %-------End of Eigen values and Eigne Vectors-------% %-----Start of Normalisation of mode shapes---------% for j = 1 : length(wn) eigvec(:,j)=eigvec(:,j)/eigvec(length(wn),j); end disp('Mode shapes:'); disp(eigvec) %-----------End of Normalisation of mode shapes-----------%  

Expert Answer

Profile picture of Prashant Kumar Prashant Kumar answered . 2025-11-20

To obtain the damping matrix using an inherent damping ratio of 2% for all vibration modes, you can modify your existing code by following these steps:
  1. Calculate the damping coefficient (c) using the formula: c = 2 * damping_ratio * sqrt(mass * stiffness), where damping_ratio is the desired inherent damping ratio (2% in this case), mass is the mass matrix, and stiffness is the stiffness matrix.
  2. Multiply the damping coefficient by the mass matrix to obtain the damping matrix (C).
Here's the modified code to incorporate these changes:
 
 
clc;
h = [5.5] + [0:3.96:20*3.95];   % Total floor height(m)
% Start of Mass Matrix
M(1,1) = 1.126e+003;      % unit: ton
M(20,20) = 1.170e+003;   % unit: ton
for i = 2:19
    M(i,i) = 1.100e+003;   % unit: ton
end
disp('Mass Matrix(ton):');
Mass Matrix(ton):
disp(M);
Columns 1 through 16

        1126           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0
           0        1100           0           0           0           0           0           0           0           0           0           0           0           0           0           0
           0           0        1100           0           0           0           0           0           0           0           0           0           0           0           0           0
           0           0           0        1100           0           0           0           0           0           0           0           0           0           0           0           0
           0           0           0           0        1100           0           0           0           0           0           0           0           0           0           0           0
           0           0           0           0           0        1100           0           0           0           0           0           0           0           0           0           0
           0           0           0           0           0           0        1100           0           0           0           0           0           0           0           0           0
           0           0           0           0           0           0           0        1100           0           0           0           0           0           0           0           0
           0           0           0           0           0           0           0           0        1100           0           0           0           0           0           0           0
           0           0           0           0           0           0           0           0           0        1100           0           0           0           0           0           0
           0           0           0           0           0           0           0           0           0           0        1100           0           0           0           0           0
           0           0           0           0           0           0           0           0           0           0           0        1100           0           0           0           0
           0           0           0           0           0           0           0           0           0           0           0           0        1100           0           0           0
           0           0           0           0           0           0           0           0           0           0           0           0           0        1100           0           0
           0           0           0           0           0           0           0           0           0           0           0           0           0           0        1100           0
           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0        1100
           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0
           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0
           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0
           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0

  Columns 17 through 20

           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0
        1100           0           0           0
           0        1100           0           0
           0           0        1100           0
           0           0           0        1170
%--------------Start of Stiffness Matrix----------%
for i=1:5
k(1,i)=862.07e+003;        % unit: kN/m
end
for i=6:11
k(1,i)=554.17e+003   ;     % unit: kN/m
end
for i=12:14
k(1,i)=453.51e+003 ;       % unit: kN/m
end
for i=15:17
k(1,i)=291.23e+003 ;      % unit: kN/m
end
for i=18:19
k(1,i)=256.46e+003    ;   % unit: kN/m
end
k(1,20)=171.70e+003   ;       % unit: kN/m
K=zeros(20,20)
K = 20×20
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
for j=1:(20-1)
    K(j,j)   =   k(1,j)+k(1,j+1);
    K(j,j+1) =  -k(1,j+1);
    K(j+1,j) =  -k(1,j+1);
end
K(20,20)=171.70e+003 ;         % unit: kN/m
% Calculate the damping coefficient (c)
damping_ratio = 0.02;  % 2% inherent damping ratio
mass = M;
stiffness = K;
c = 2 * damping_ratio * sqrt(mass * stiffness);
% Multiply the damping coefficient by the mass matrix to obtain the damping matrix (C)
C = c .* M;
% Start of Eigen Values and Eigen Vectors
[eigvec, eigval] = eig(K, M); % Eigen Values and Vectors
wn = sort(sqrt(diag(eigval)));
f = wn / (2*pi);
Tn = (2*pi) ./ wn;
disp('Mode  Omega(w)  Time_Period ')
Mode  Omega(w)  Time_Period 
for i = 1:length(wn)
    fprintf(' %d        %.2f         %.2f \n', i, wn(i,1), Tn(i,1))
end
 1        1.79         3.51 
 2        4.65         1.35 
 3        7.73         0.81 
 4        10.45         0.60 
 5        13.16         0.48 
 6        16.07         0.39 
 7        18.51         0.34 
 8        21.48         0.29 
 9        23.70         0.27 
 10        26.15         0.24 
 11        27.84         0.23 
 12        30.07         0.21 
 13        31.42         0.20 
 14        34.49         0.18 
 15        37.31         0.17 
 16        39.31         0.16 
 17        41.60         0.15 
 18        43.90         0.14 
 19        48.23         0.13 
 20        53.93         0.12 
% Start of Normalisation of mode shapes
for j = 1:length(wn)
    eigvec(:,j) = eigvec(:,j) / eigvec(length(wn),j);
end
disp('Mode shapes:');
Mode shapes:
disp(eigvec);
 1.0e+11 *

  Columns 1 through 19

    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0157
    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000   -0.0163
    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0001
    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0162
    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000   -0.0157
    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0073
    0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0034
    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0016
    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000   -0.0007
    0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000    0.0003
    0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0001
    0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
    0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000
    0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
    0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000
    0.0000    0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
    0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000
    0.0000    0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
    0.0000    0.0000    0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000

  Column 20

   -3.9705
    7.1448
   -8.2594
    6.9930
   -3.7107
    1.0641
   -0.3051
    0.0875
   -0.0251
    0.0071
   -0.0019
    0.0004
   -0.0001
    0.0000
   -0.0000
    0.0000
   -0.0000
    0.0000
   -0.0000
    0.0000

By adding the calculation of the damping coefficient and multiplying it with the mass matrix, you will obtain the desired damping matrix (C) using the inherent damping ratio of 2% for all vibration modes.


Not satisfied with the answer ?? ASK NOW

Get a Free Consultation or a Sample Assignment Review!