I'm trying to reproduce the picture at the end of the documentation:
John Williams answered .
2025-11-20
% True curve.
fun = @(x) x.*sin(x);
xx = linspace(0,10,100)';
yy = fun(xx);
% Example points (from doc). You can do xd = linspace(1,9,nd)' as well
% but you will get a different fit.
xd = [1,3,5,6,7,8]';
yd = fun(xd);
% Fit a GP model. Initialize 'Sigma' to a small value. A GP estimates
% its parameters by maximizing the marginal log likelihood. Depending
% on the data, the marginal log likelihood can have multiple local
% optima corresponding to different interpretations of the data.
% Initializing 'Sigma' to a small value discourages the high noise
% variance interpretation of the data.
gp = fitrgp(xd,yd,'KernelFunction','squaredexponential','sigma',0.1,'verbose',1);
% Plot.
figure(1); clf
plot(xx,yy, 'r-.')
hold on;
[ypred,~,yint] = predict(gp,xx);
plot(xx,ypred, 'g-');
plot(xx,yint(:,1),'k-');
plot(xx,yint(:,2),'m-');
plot(xd,yd,'ro');
legend('f(x) = x.*sin(x)','GPR predictions','Lower 95% interval','Upper 95% interval','Observations','Location','Best');