Simulink 3D Animation: how to compute the projection matrix associated with the camera view in a virtual reality world? I am using Simulink 3D Animation to model a virtual reality environment. In MATLAB, how do I calculate the projection of the world in the same way as it is rendered on the screen?
Neeta Dsouza answered .
2025-11-20
In Simulink 3D Animation, the projection matrix of a camera determines how a 3D scene is projected onto a 2D plane. To compute the projection matrix for a camera view in a virtual reality world, you can use the following steps in MATLAB.
Access the Camera Node:
vrworld.getfield or directly accessing the camera properties.Extract Camera Parameters:
Build the Projection Matrix:
% Load the virtual reality world
vr_world = vrworld('my_vr_world.wrl');
open(vr_world);
% Access the camera node
camera_node = vrnode(vr_world, 'CameraNodeName'); % Replace with the actual camera node name
% Retrieve camera parameters
field_of_view = camera_node.fieldOfView; % Horizontal field of view in radians
aspect_ratio = camera_node.aspectRatio; % Aspect ratio (width/height)
position = camera_node.translation; % Camera position [x, y, z]
orientation = camera_node.rotation; % Camera orientation [axis_x, axis_y, axis_z, angle]
% Compute intrinsic matrix (K)
f = 1 / tan(field_of_view / 2); % Focal length (assumes normalized coordinates)
K = [f / aspect_ratio, 0, 0;
0, f, 0;
0, 0, 1];
% Compute extrinsic matrix (R and t)
R = vrrotvec2mat(orientation); % Rotation matrix from orientation
t = -R * position'; % Translation vector
Rt = [R, t]; % Combine rotation and translation
% Combine intrinsic and extrinsic to get the projection matrix
P = K * [R, t];
% Display the result
disp('Projection Matrix:');
disp(P);
Intrinsic Parameters:
field_of_view: Determines the horizontal field of view in radians.aspect_ratio: Used to adjust the focal length for the height of the image.Extrinsic Parameters:
position: Camera position in the world coordinates.orientation: A rotation vector (axis-angle format) representing the camera's orientation.Projection Matrix: