I see a few deep learning networks supported for code generation using MATLAB Coder: Deep Learning Networks and Layers Supported for C++ Code Generation I'm looking to generate code from my deep learning network (like ResNet, GoogLeNet, SqueezeNet, VGG-16/19, etc) to run on boards supported by TensorFlow Lite using MATLAB Coder. What are the steps to do this?
Prashant Kumar answered .
2025-11-20
% clone the git repo
git clone https://github.com/tensorflow/tensorflow.git
% git clone will automatically download the code into a folder named `tensorflow`
cd tensorflow
% checkout version 2.4.1
git checkout v2.4.1
% install dependencies
pip --no-cache-dir install numpy future
% Download flatbuffers and other dependent files by running the following command from within the command prompt in Windows:
./tensorflow/lite/tools/make/download_dependencies.sh
% configure tensorflowlite installation
python ./configure.py
% build the dynamic library
bazel build -c opt //tensorflow/lite:tensorflowlite.dll
% it might be necessary to provide python path if it's not picked up automatically
bazel build -c opt //tensorflow/lite:tensorflowlite.dll --action_env PYTHON_BIN_PATH=
% Create a directory named lib and copy the contents of the bazel-bin directory into it.
cd bazel-bin
cp -r ../lib/
% To configure the MATLAB environment for TensorFlow Lite code generation, set the environment variables TFLITE_PATH
% is the full-path to `tensorflow` folder where you have downloaded the source files
setenv('TFLITE_PATH’, ‘’);