Dear community, I apologize that I can't offer a better first try. I have a double array. I want to write a Loop for removing outliers from every column. The idea is: The code test for outliers, remove them, do it again, as long as there are outliers. If no outliers are found anymore, it should stop and give me back an double array without these outliers. I tried it: directory_name=uigetdir('','Ordner mit Messungen auswählen'); [nur_file_name,pfad]=uigetfile({'*.csv','csv-files (*.csv)';'*.*','all Files'},... 'Die csv-Files der Proben oeffnen (probe_001.csv=',[directory_name '/'], 'Multiselect', 'on'); nur_file_name=cellstr(nur_file_name); nur_file_name=sort(nur_file_name); filename=strcat(pfad,nur_file_name); anzahl_files=size(filename,2); for xy=1:anzahl_files fid_in=fopen(char(filename(xy)),'r'); filename_s = matlab.lang.makeValidName(nur_file_name); filename_s=string(filename_s); filename_s = erase(filename_s,"_csv"); filename_s = erase(filename_s,"LiqQuant_"); filename_c=cellstr(filename_s); for c=1:anzahl_files filename_f{c}=extractBefore(filename_c{c},11); end filename_s=string(filename_f); %----------------Import elements and intensity-------------------- clear element_RL clear intens_RL tmpImport = importdata(filename{xy},','); element_RL = tmpImport.colheaders; element_RL(:,[1 6 8 10 12 14 16 17 19 21 23 26 27 29 30 32 33 36 38 43 45 48 57 59 61 64 67 69 94 97 99 102 106 223 298 303 304 305])=[]; element_RL=string(element_RL); [anzahl_zeile,anzahl_elemente]=size(element_RL); intens_RL=tmpImport.data; intens_RL(:,[1 6 8 10 12 14 16 17 19 21 23 26 27 29 30 32 33 36 38 43 45 48 57 59 61 64 67 69 94 97 99 102 106 223 298 303 304 305])=[]; [anzahl_runs,anzahl_elemente]=size(intens_RL); %---------------remove outliers---------------- while intens_RL=ismember(NaN) %Wrong, because will run forever threshold = mean(intens_RL)+3*std(intens_RL); intens_RL(bsxfun(@(x, y) x > y, intens_RL, threshold)) = NaN; %outliers removing, set to NaN end that my loop is so horrible, but I never wrote a while-loop before.
Neeta Dsouza answered .
2025-11-20
directory_name=uigetdir('','Ordner mit Messungen auswählen');
[nur_file_name,pfad]=uigetfile({'*.csv','csv-files (*.csv)';'*.*','all Files'},...
'Die csv-Files der Proben oeffnen (probe_001.csv=',[directory_name '/'], 'Multiselect', 'on');
nur_file_name=cellstr(nur_file_name);
nur_file_name=sort(nur_file_name);
filename=strcat(pfad,nur_file_name);
anzahl_files=size(filename,2);
for xy=1:anzahl_files
fid_in=fopen(char(filename(xy)),'r');
filename_s = matlab.lang.makeValidName(nur_file_name);
filename_s=string(filename_s);
filename_s = erase(filename_s,"_csv");
filename_s = erase(filename_s,"LiqQuant_");
filename_c=cellstr(filename_s);
for c=1:anzahl_files
filename_f{c}=extractBefore(filename_c{c},11);
end
filename_s=string(filename_f);
%----------------Import elements and intensity--------------------
clear element_RL
clear intens_RL
tmpImport = importdata(filename{xy},',');
element_RL = tmpImport.colheaders;
element_RL(:,[1 6 8 10 12 14 16 17 19 21 23 26 27 29 30 32 33 36 38 43 45 48 57 59 61 64 67 69 94 97 99 102 106 223 298 303 304 305])=[];
element_RL=string(element_RL);
[anzahl_zeile,anzahl_elemente]=size(element_RL);
intens_RL=tmpImport.data;
intens_RL(:,[1 6 8 10 12 14 16 17 19 21 23 26 27 29 30 32 33 36 38 43 45 48 57 59 61 64 67 69 94 97 99 102 106 223 298 303 304 305])=[];
[anzahl_runs,anzahl_elemente]=size(intens_RL);
%---------------remove outliers----------------
figure(1)
clim = [-5 7];
subplot(211),imagesc(log10(abs(intens_RL)),clim);colormap('jet');colorbar("vert")
title('before thresholding');
c = 1; % init c above 0
while c>0
threshold = mean(intens_RL,1,'omitnan')+3*std(intens_RL,1,'omitnan');
ind = intens_RL>(ones(anzahl_runs,1)*threshold);
% ind = intens_RL>threshold; % works too
b = find(ind);
c = numel(b) % will display in the command window how many outliers are removed at each iteration
intens_RL(ind) = NaN;
end
subplot(212),imagesc(log10(abs(intens_RL)),clim);colormap('jet');colorbar("vert")
title('after thresholding');
end