Classification Using Nearest Neighbors 5

Examine Quality of KNN Classifier

This example shows how to examine the quality of a k-nearest neighbor classifier using resubstitution and cross validation.

Construct a KNN classifier for the Fisher iris data as in Construct KNN Classifier.

load fisheriris
X = meas;    
Y = species; 
rng(10); % For reproducibility
Mdl = fitcknn(X,Y,'NumNeighbors',4);

Examine the resubstitution loss, which, by default, is the fraction of misclassifications from the predictions of Mdl. (For nondefault cost, weights, or priors, see loss.).

rloss = resubLoss(Mdl)
rloss = 0.0400

The classifier predicts incorrectly for 4% of the training data.

Construct a cross-validated classifier from the model.

CVMdl = crossval(Mdl);

Examine the cross-validation loss, which is the average loss of each cross-validation model when predicting on data that is not used for training.

kloss = kfoldLoss(CVMdl)
kloss = 0.0333

The cross-validated classification accuracy resembles the resubstitution accuracy. Therefore, you can expect Mdl to misclassify approximately 4% of new data, assuming that the new data has about the same distribution as the training data.

Predict Classification Using KNN Classifier

This example shows how to predict classification for a k-nearest neighbor classifier.

Construct a KNN classifier for the Fisher iris data as in Construct KNN Classifier.

load fisheriris
X = meas;    
Y = species; 
Mdl = fitcknn(X,Y,'NumNeighbors',4);

Predict the classification of an average flower.

flwr = mean(X); % an average flower
flwrClass = predict(Mdl,flwr)
flwrClass = 1x1 cell array
    {'versicolor'}


Modify KNN Classifier

This example shows how to modify a k-nearest neighbor classifier.

Construct a KNN classifier for the Fisher iris data as in Construct KNN Classifier.

load fisheriris
X = meas;    
Y = species; 
Mdl = fitcknn(X,Y,'NumNeighbors',4);

Modify the model to use the three nearest neighbors, rather than the default one nearest neighbor.

Mdl.NumNeighbors = 3;

Compare the resubstitution predictions and cross-validation loss with the new number of neighbors.

loss = resubLoss(Mdl)
loss = 0.0400
rng(10); % For reproducibility
CVMdl = crossval(Mdl,'KFold',5);
kloss = kfoldLoss(CVMdl)
kloss = 0.0333

In this case, the model with three neighbors has the same cross-validated loss as the model with four neighbors (see Examine Quality of KNN Classifier).

Modify the model to use cosine distance instead of the default, and examine the loss. To use cosine distance, you must recreate the model using the exhaustive search method.

CMdl = fitcknn(X,Y,'NSMethod','exhaustive','Distance','cosine');
CMdl.NumNeighbors = 3;
closs = resubLoss(CMdl)
closs = 0.0200

The classifier now has lower resubstitution error than before.

Check the quality of a cross-validated version of the new model.

CVCMdl = crossval(CMdl);
kcloss = kfoldLoss(CVCMdl)
kcloss = 0.0200

CVCMdl has a better cross-validated loss than CVMdl. However, in general, improving the resubstitution error does not necessarily produce a model with better test-sample predictions.

 

Matlabsolutions.com provides guaranteed satisfaction with a commitment to complete the work within time. Combined with our meticulous work ethics and extensive domain experience, We are the ideal partner for all your homework/assignment needs. We pledge to provide 24*7 support to dissolve all your academic doubts. We are composed of 300+ esteemed Matlab and other experts who have been empanelled after extensive research and quality check.

Matlabsolutions.com provides undivided attention to each Matlab assignment order with a methodical approach to solution. Our network span is not restricted to US, UK and Australia rather extends to countries like Singapore, Canada and UAE. Our Matlab assignment help services include Image Processing Assignments, Electrical Engineering Assignments, Matlab homework help, Matlab Research Paper help, Matlab Simulink help. Get your work done at the best price in industry.

Machine Learning in MATLAB

Train Classification Models in Classification Learner App

Train Regression Models in Regression Learner App

Distribution Plots

Explore the Random Number Generation UI

Design of Experiments

Machine Learning Models

Logistic regression

Logistic regression create generalized linear regression model - MATLAB fitglm 2

Support Vector Machines for Binary Classification

Support Vector Machines for Binary Classification 2

Support Vector Machines for Binary Classification 3

Support Vector Machines for Binary Classification 4

Support Vector Machines for Binary Classification 5

Assess Neural Network Classifier Performance

Naive Bayes Classification

ClassificationTree class

Discriminant Analysis Classification

Ensemble classifier

ClassificationTree class 2

Train Generalized Additive Model for Binary Classification

Train Generalized Additive Model for Binary Classification 2

Classification Using Nearest Neighbors

Classification Using Nearest Neighbors 2

Classification Using Nearest Neighbors 3

Classification Using Nearest Neighbors 4

Classification Using Nearest Neighbors 5

Linear Regression

Linear Regression 2

Linear Regression 3

Linear Regression 4

Nonlinear Regression

Nonlinear Regression 2

Visualizing Multivariate Data

Generalized Linear Models

Generalized Linear Models 2

RegressionTree class

RegressionTree class 2

Neural networks

Gaussian Process Regression Models

Gaussian Process Regression Models 2

Understanding Support Vector Machine Regression

Understanding Support Vector Machine Regression 2

RegressionEnsemble